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ABSTRACT 
The finite element method is used t o  study the influ- 

ence of porosity and pore shape on t,he elastic properties 
of model porous media. The Young’s modulus of each 
model was found to be practically independent of the 
solid Poisson’s ratio. The result,s are in good agreemen- 
t with experimental data. We provide simple formu- 
lae that can be used to predict the elastic properties of 
porous media, and allow the accurate intcrprctation of 
empirical data in terms of pore shape and structure. 

Keywords: elastic moduli, finite-element method, 
porous media, ceramics, foams, random materials. 

1 Introduction 

Materials with complex microstructurc arise in a wide 
range of applications. Materials include ceramics, foamed 
solids, aerogels, polymer blends, and artificial bone [1]-[3] 
If a material is to be synthesized for a particular pur- 
pose, it is important, to understand t,he relationship be- 
tween microstructure and the target property. Gener- 
ally, theoretical relationships only account for porosity, 
although the shape and nature (c.g. conncctivity) of the 
the porosity and solid phase are known to be critical. In 
this study, we use the finite element method to study the 
relationship between microstructure and the bulk elastic 
properties of a wide range of realistic porous models. 

There have been several different approaches to de- 
riving property-porosity relations for random porous ma- 
terials. Formulae derived using the micro-mechanacs 
method [4] are essentially various methods of approx- 
imately extending cxact results for small fractions of 
spherical pores to higher porosities. A drawback of this 
approach is that the microstructure corresponding to a 
particular formula is not precisely known; hence agree- 
ment or disagreement, with data can neither confirm nor 
reject a particular model. A second class of models, 
based on periodic microstructures (for example arrays 
of spheres or repeated cell-units), arc often too simple 
to mimic the complex microstructures found iri  real ma- 
terials. Finally, there do exist, rigorous theories based on 
microstruct,ural inputs [3], but the information required 
to evaluate the results is generally difficult to  obtain. 
The most, promising results in this class are variational 

bounds [I], [3]. 
Another approach is to computationally solve the e- 

quations of elasticity for digital models of microstruc- 
ture [5]. In principle this can be done exactly. How- 
ever, large statistical variations and insufficient resolii- 
tion have limited the accuracy of results obtained t,o 
date. Only recently have computers been able to han- 
dle the large 3-D models and number of computations 
needed to obtain reasonable results. As input to  the 
method, we employ nine different microstructural mod- 
els that broadly cover the types of morphology observcd 
in porous materials. The resuks, which can be expressed 
simply by two parameter relations, correspond to a par- 
ticular microstructure and explicitly show how the prop- 
erties depend on the nature of the porosity. Therefore, 
the results can be used as a predictive tool for cases 
where the microstructure of the material is similar to 
one of the models, and as an interprctive tool if the mi- 
crostructure is unknown. 

2 Results and discussion 
The models we consider are depicted in Fig. 1. The 

models are digitized on grids of a sufficiently high resolu- 
tion to capture the important details of the model. This 
study is limited t o  grids of linear dimension M 5 128 
(ie. M 3  x 2 x lo6 pixels). The finite element method 
(FEM) uses a variational formulation of the linear elas- 
tic equations, and finds the solution by minimizing the 
elastic energy via a fast, conjugate gradient method. A 
strain is applied, with the average stress or the aver- 
age elastic energy giving the effective elastic moduli 111, 
[3]. Details of the theory and programs used arc re- 
port,ed in Ref. [5 ] .  The actual programs are available at  
http://ciks. cht.nist.gov/garboczz/, Part I1 Chapter 2. 

Results for t,he “Boolean” models (overlapping solid 
sphere, spherical pores and ellipsoidal pores) are shown 
in Fig. 2. Each symbol represents t,he average over five 
different samples to reduce statistical errors in the re- 
sults. We study the models for reduced densities p = 
p/ps > 0.5, where p and ps are the density of the porous 
media and solid matrix respectively. It becomes iri- 
creasingly difficult to make accurate measurements at  
low densities as the properties depend more and more 
on thin connections which are difficult to accurately re- 
solve. The density range we study encompasses most 
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Figure 1: The model microstructures. (a) overlapping solid spheres, (b) overlapping spherical pores, (c) overlapping 
ellipsoidal pores, (d) open-cell Voronoi tessellation, (e) closed-cell Voronoi tessellation, (f) open-cell node-bond model, 
(g) open-cell node-bond model, (h) open-cell level-cut, Gaussian random field, and (i) closed-cell level-cut, Gaussian 
random field. The Boolean models (a -c) are discussed in Refs. [3], [6] and the Voronoi tessellation (d -e) is reviewed 
by Stoyan et al [6]. The node-bond models (f-g) will be described in a forthcoming paper [7] and t,he details of the 
level-cut Gaussian random field scheme we use is reported in Ref. [a] 
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Figure 2: The You~ig's modulus of tlic Boolean ~riodels 
sliowri iri Fig. 1. Tlic alIriost overlapping sy~iibols at each 
point correspond to different solid Poisson's ratios. The 
dotted line is the Hashiri-SlitrikrriaIi upper-bouiid [l] for 
isotropic media. 
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Figure 4: The Yourig's iiiodulus of the cellular rriodels 
shown iri Figs. l (d -~ i ) .  Tlic solid arid dashed lilies corre- 
sporid to the cnipirical fits given in Table 1. 
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Figure 3: Experimental data for porous alumina coni- 
pared with the overlapping spherical pore (~ -, Fig. lb)  
and solid sphere Iiiodels (- ~ --: Fig. la ) .  

sintered ceraIriics? with which we compare our results 
below. The density depeIideIice of the Young's modulus 
can be fitted with the equation 

E/Es = ( ( P  - Po)/(l - P o ) ) m  (1) 

where and 'rri are reported in Table 1. Here E (E,) 
is the Young's modulus of the porous riiediurri (solid 
matrix). Note that rri arid po are e~ripirical correlation 
parameters and should not be interpreted as tlie perco- 
lation exponent arid threshold, respectively. The FEM 
results shown iu the figure took approximately four t- 
housand hours to compute on current high-end worksta- 
tions. 

111 Figure 3 we compare the results to expeririieiital 
data for porous alurriiria [9]: [lo]. Most of the data falls 

Figure 5: Experimental data for open- (0) and closed- 
cell (A) cellular solids compared with the FEM results 
for open- (- ~ -. Fig. Id) arid closed-cell (--. Fig. le)  
Voronoi tessellations. 

close to the line for overlapping solid spheres (Fig. la).  
h4aIly of these ceramics are synthesized by sintering a 
ceramic powder: consistent with the model microstruc- 
ture. The additional data [9] are for a material made 
with a particulate filler, which should give a Iriicrostruc- 
ture similar to that observed in the overlapping spherical 
pore model (Fig. lb) .  The FER4 result for this model is 
seen to agree well with the data. 

%'e have also studied the properties of six differeri- 
t models of cellular solids [2]. At high densities the 
data caii be described by Eq. (1) with the parameters 
reported in Table 1. The density range where Eq. (1) 
reriiains accurate is also given. Since cellular solids can 
have extremely low densities (e.g. p NN 0.01 for open- 
cell materials) , it is necessary to obtain results at lower 
densities. For each of the models the FEM results ap- 
pear to adopt a linear behaviour on a log-log graph as 
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111 [2] E / E S  CJ)". T l l ~  I,iiraIil(:t,c:rs C a~itl ' 1 1 .  arid t,li(! 
applicxble tlwsity raligc:. arc giwn for each of  i,he (:dii- 
lar rriod(:ls in Table 1. 

111 Fig. 5 we co~riparc: sel(:ct,otl FEM results for i h !  
c:cllular ~iiodt:ls with experim:ut,al data. Tlic! Yor1rig;'s 
~~iodulus of closed-cell foarried glass [I 11 agrees well with 
rwults for the c:losc:d-cc:ll Voronoi tesselation (Fig. lc). 
hforeover, rriicmgraplis of the glass [ 1 I] show a struc- 
ture siuiilar l,o that, of the r~iodel. Data for opt:~i-cc:ll 
materials [a] sliow c:oiisideraMc scatter. h i t  appear to 
be reasonably well Iiiodelled by tlie operi-cell C'oronoi 
tessellatioii (Fig. Id).  

We have also studied tlie irifluerice of solid Poisson's 
ratio v, 0 1 1  the Yourig's Iiiotlulus. The Young's modiilus 
at v, = [- O.l ,O.O 0.41 is plotted in  Fig. 2. a t  a giv- 
en density the results are practically iridisti~iguislial~le, 
iIidicatiIig that E is nearly iiidepeIident of v s .  Tlierefore, 
tlie empirical forrnulae given in Table 1 can h: app1it:d 
to solids with arbitrary PoissoIi's ratios. Exact calcu- 
lations for the modulus of a matrix cout,aiIiiIig dilute 
spherical pores [I] actually show a s~riall dept:ritleuce OII 

v,., indicating that the result, is only approxiiiiatkly true. 
Tlie models we have coilsidered above are qualita- 

tively similar to the microstructures observed iii real 
composites. However, it is also iriiportant to c3stal)lisli 
a yuaiititative link with experirrieIita1 cliarac:t,erieatiori 
data. This may be done by tuiiing tlie parauieters of 
a 3-D model so that its statistical iiiicrostructure prop- 
erties Iriatcli those of a 2-D micrograph. As an exam- 
ple, we sliow a porous tungsten matrix aiid its 3-D s- 
tatistical reconstruction iii Fig. 6 (tlie details are giv- 
en in Ref. [SI). The finite-element code is theii used 
to measure the YouIig's modulus of the model giving 
E/E,=0.57 (where we have used a solid Poisson's ratio 
of v = 0.28). This compares well with the experimeii- 
tal value of E/E,=0.59. The process of Irieasuriiig the 
statistical properties of a given material, generating a 
corresponding iiiodel, arid riieasuriIig its properties is 
time intensive. It is expected that future research will 
make tlie irietliod more efficieut. 

We have derived eiriprical finite-element theories that 
explicity show tlie coiinectiori between density, microstruc- 
ture, arid the Young's modulus of corriplex porous ma- 
terials. Tlie results 11iay be used to predict tlie proper- 
ties of porous materials, or accurately interpret experi- 
~nental rrieasurerrients. The results will be described in 
greater detail iIi a forthco~~ii~ig publication (71. 
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